skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Forester, Brenna_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers. 
    more » « less
  2. ABSTRACT Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population‐level variation in sensitivity and adaptive capacity. Here, we address the question of local adaptation to temperature and the genetic basis of thermal tolerance in two stream frogs (Ascaphus trueiandA. montanus). Building on previous physiological and temperature data, we used whole‐genome resequencing of tadpoles from four sites spanning temperature gradients in each species to test for signatures of local adaptation. To support these analyses, we developed the first annotated reference genome forA. truei. We then expanded the geographic scope of our analysis using targeted capture at an additional 11 sites per species. We found evidence of local adaptation to temperature based on physiological and genomic data inA. montanusand genomic data inA. truei, suggesting similar levels of sensitivity (i.e., susceptibility) among populations regardless of stream temperature. However, invariant thermal tolerances across temperatures inA. trueisuggest that populations occupying warmer streams may be most sensitive. We identified high levels of evolutionary potential in both species based on genomic and physiological data. While further integration of these data is needed to comprehensively evaluate spatial variation in vulnerability, this work illustrates the value of genomics in identifying spatial patterns of climate change vulnerability. 
    more » « less
  3. Abstract 1. Critical thermal limits represent an important component of an organism's capacity to cope with future temperature changes. Understanding the drivers of variation in these traits may uncover patterns in physiological vulnerability to climate change. Local temperature extremes have emerged as a major driver of thermal limits, although their effects can be mediated by the exploitation of fine‐scale spatial variation in temperature through behavioural thermoregulation. 2. Here, we investigated thermal limits along elevation gradients within and between two cold‐water frog species (Ascaphusspp.), one with a coastal distribution (A. truei) and the other with a continental range (A. montanus). We quantified thermal limits for over 700 tadpoles, representing multiple populations from each species. We combined local temporal and fine‐scale spatial temperature data to quantify local thermal landscapes (i.e., thermalscapes), including the opportunity for behavioural thermoregulation. 3. Lower thermal limits for either species could not be reached experimentally without the water freezing, suggesting that cold tolerance is <0.3°C. By contrast, upper thermal limits varied among populations, but this variation only reflected local temperature extremes inA. montanus, perhaps as a consequence of the greater variation in stream temperatures across its range. Lastly, we found minimal fine‐scale spatial variability in temperature, suggesting limited opportunity for behavioural thermoregulation and thus increased vulnerability to warming for all populations. 4. By quantifying local thermalscapes, we uncovered different trends in the relative vulnerability of populations across elevation for each species. InA. truei, physiological vulnerability decreased with elevation, whereas inA. montanus, all populations were equally physiologically vulnerable. These results highlight how similar environments can differentially shape physiological tolerance and patterns of vulnerability of species, and in turn impact their vulnerability to future warming. 
    more » « less